Ab initio simulation and optimization of phonon drag effect for lower - temperature thermoelectric energy

نویسندگان

  • Jiawei Zhou
  • Gang Chen
  • Carl Richard Soderberg
چکیده

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. Abstract In recent years, extensive efforts have been devoted to searching for materials with high thermoelectric (TE) efficiency above room temperature for converting heat into electricity. These efforts have led to significant advances with a record-high zT above 2. However, the pursuit of higher TE performance at lower temperatures for cooling and refrigeration applications receives much less attention. Today's most widely-used thermoelectric materials below room temperature are still (Bi,Sb) 2 (Te,Se) 3 material system, discovered 60 years ago with a maximum zT around 1. This thesis develops the first-principles simulation tools to study the phonon drag effect-a coupling phenomenon between electrons and non-equilibrium phonons-that leads to a large Seebeck coefficient at low temperatures. Phonon drag effect is simulated successfully from first-principles for the first time and results compare well with experimental data on silicon. While the common wisdom always connects a significant phonon drag effect to a high thermal conductivity, a key insight revealed from the simulation is that phonons contributing to phonon drag and to thermal conductivity do not spectrally overlap. Even in a heavily-doped silicon sample with 1019 cm-3 doping concentration, phonon drag still contributes to-50% of the total Seebeck coefficient. By selectively scattering phonons contributing to heat conduction but not to phonon drag, a large improvement in thermoelectric figure of merit zT is possible. An ideal phonon filter is shown to tremendously enhance zT of n-type silicon at room temperature by a factor of 20 to-0.25, and the enhancement reaches 70 times at lOOK. A practical phonon filtering method based on nanocluster scattering is shown to enhance zT due to reduced thermal conductivity and optimized phonon drag effect. This work opens up a new venue towards better themoelectrics by harnessing non-equilibrium phonons. More material systems can be systematically studied with the developed simulation tools.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion.

Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect--a coupling phenomenon between electro...

متن کامل

Ab-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds

Abstract: In this work we investigate the electronic, optical, dynamic and thermoelectric properties of ternary copper-based Chalcogenides CuSbX2 (X= S, Se) compounds. Calculations are based on density functional theory and the semi-classical Boltzmann theory. Computations have been carried out by using Quantum-Espresso (PWSCF) package and ab-initio pseudo-potential technique. To estimate the e...

متن کامل

Corrigendum: Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrys...

متن کامل

Monte Carlo formulation of ab initio phonon transport and its application to the study of kinetic effects in graphene ribbons MASSACHUSET -

We present a deviational Monte Carlo method for solving the Boltzmann equation for phonon transport subject to the linearized ab initio 3-phonon scattering operator. Phonon dispersion relations and transition rates are obtained from density functional theory calculations. The ab initio scattering operator replaces the commonly used relaxation-time approximation, which is known to neglect, among...

متن کامل

Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2

Phonon transport is an essential property of thermoelectric materials. Although the phonon carries heat, which reduces the thermoelectric efficiency, it contributes positively to the Seebeck coefficient S through the phonon-drag effect, as typified by the high-purity semiconductors, which show fairly large S at cryogenic temperatures. Although such a large S is attractive in terms of Peltier co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015